Environmental Product Declaration

In accordance with ISO 14025:2006 and EN 15804:2012+A2:2019/AC:2021 for:

Alterna Dishwasher switch valve / Alterna Avstängningsventil för disk- tvättmaskin

from

Saint-Gobain Distribution Sweden AB

Program: The International EPD System, <u>www.environdec.com</u>

Program operator: EPD International AB

Type of EPD: EPD on multiple products, based on a representative product

EPD registration number: | EPD-IES-0025577:001

Version date: 2025-09-25 Validity date: 2030-09-24

An EPD may be updated or depublished if conditions change. To find the latest version of the EPD and to confirm its validity, see www.environdec.com

General information

Programme information

Programme:	The International EPD System	
	EPD International AB	
Address:	Box 210 60	
	SE-100 31 Stockholm	
	Sweden	
Website:	www.environdec.com	
E-mail:	support@environdec.com	

PCR and verification

Product Category Rules (PCR):
CEN standard EN 15804:2012+A2:2019/AC:2021 serves as the Core Product Category Rules (PCR)
Product Category Rules (PCR): Construction Products PCR 2019:14 version 2.0.1
PCR review was conducted by: PCR review was conducted by the Technical Committee of the International EPD® System. See https://environdec.com/about-us/the-international-epd-system-about-the-system for a list of members. Review chair: Rob Rouwette. The review panel may be contacted via the Secretariat www.environdec.com/contact.
Life Cycle Assessment (LCA)
LCA accountability: Fanni Végvári, CarbonZero AB
Third-party verification
Independent third-party verification of the declaration and data, according to ISO 14025:2006, via:
☑ Individual EPD verification without a pre-verified LCA/EPD tool
Third-party verifier: Stephen Forson, ViridisPride
Approved by: The International EPD System
Procedure for follow-up of data during EPD validity involves third party verifier:
□ Yes ⊠ No

The EPD owner has the sole ownership, liability, and responsibility for the EPD.

EPDs within the same product category but published in different EPD programmes, may not be comparable. For two EPDs to be comparable, they shall be based on the same PCR (including the same first-digit version number) or be based on fully aligned PCRs or versions of PCRs; cover products with identical functions, technical performances and use (e.g. identical declared/functional units); have identical scope in terms of included life-cycle stages (unless the excluded life-cycle stage is demonstrated to be insignificant); apply identical impact assessment methods (including the same version of characterisation factors); and be valid at the time of comparison.

For further information about comparability, see EN 15804 and ISO 14025.

Information about EPD owner

Owner of the EPD	Saint-Gobain Distribution Sweden AB Bryggerivägen 9
0	168 67 Bromma Stockholm
Contact	SGDS - Beriar Maroof (beriar.maroof@saint-gobain.se)
Description of the organisation	Saint-Gobain Distribution Sweden AB - specialists in collaboration for more efficient business in construction and installation. Saint-Gobain Distribution Sweden AB is the head company of some of Sweden's leading trading companies in construction, sheet metal, tiles and installation. All the companies have long and solid industry experience and provide most of Sweden's craftsmen with materials for various projects. Customers in different companies can also buy support items from the sister companies in the group, and in selected cases, we take joint projects to facilitate the logistics of the supply of goods, which is then often critical for a smooth construction project. • Optimera - construction trade for professional carpenters • Dahl – heat, plumbing and sanitary specialist • Bevego - building sheet metal, ventilation and technical insulation • Kakelspecialisten and Konradsson's Tiles - tiles, tiling and bathroom fittings The company's focus is on sales and services with direct contact to about 150,000 customers regularly. Saint-Gobain Distribution Sweden AB is owned by Saint-Gobain with
	a presence in 64 countries and over 190 000 employees worldwide.

Product information

Product name	Alterna Dishwasher switch valve / Alterna		
	Avstängningsventil för disk- tvättmaskin		
Product identification	Shower articles		
UN CPC code	42911– Sinks, wash-basins, baths and other sanitary ware and parts thereof, of iron, steel, copper or aluminium		
Product description	Alterna dishwasher switch valves are made from plastics, rubber and metals.		
Location of production site	Xiamen, China		
Technical data	Alterna dishwashers switch valves with ceramic seal. 400 mm connection hoses in soft-PEX. Suitable for countertops 0–75 mm thick. Cut-out diameter in countertop: Ø29–35 mm. For more technical specifications, please visit https://www.dahl.se/ .		
Use	Alterna dishwasher swich valve for dishwashers and washing machines		

Products included in this study

Product name	Geographical scope	Article number	Product image	Website
DISK- OCH TVÄTTMASKINSAVSTÄNGNING KROM ALTERNA		8080953		
DISK- OCH TVÄTTMASKINSAVSTÄNGNING SVART ALTERNA	Sweden	8394500		https://www.dahl.se/

This EPD covers multiple products, with a representative product that was determined amongst the LCA practitioner, manufacturer and EPD owner. The EPD covers the products in the table above and as per the declared unit of 1 kg of product, the material composition and manufacturing processes are similar enough to assume that the environmental impact remains the same across all products.

Content declaration of representative product

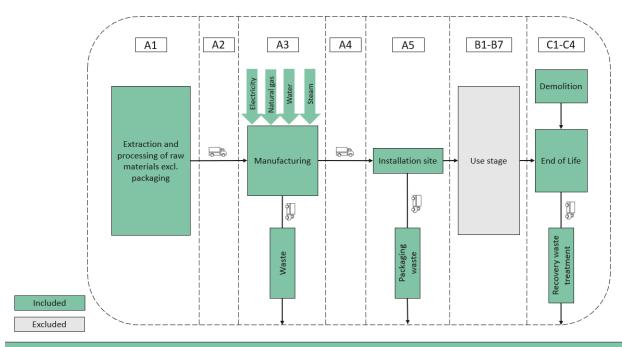
Product composition	Amount (kg)	Post-consumer recycled material, mass-% of product	Biogenic material, mass- % of product	Biogenic material ¹ , kg C/declared unit
Brass	7,06E-01	0	0	0
EPDM	2,20E-03	0	0	0
Galvanized steel	1,72E-02	0	0	0
POM	1,20E-03	0	0	0
Stainless steel	1,53E-01	0	0	0
Zinc	1,20E-01	0	0	0
Total	1	0	0	0
Packaging composition	Weight, kg	Weight-% (versus the product)	Biogenic material, mass- % of packaging	Biogenic material ¹ , kg C/declared unit
Cardboard	1,28E+00	128	45	0,576
PE	1,05E+00	105	0	0
Paper	1,00E-03	0,1	47,2	0,000472
Total	2,33E+00	233,1	25	0,576

Hazardous substances from the candidate list of SVHC	EC No.	CAS No.	Mass-% per declared unit
-	-	-	-

In this study, no hazardous or toxic materials or substances are included in the product that are in the candidate list of Substances of Very High Concern (SVHCs) which exceeds the limits for registration with the European Chemicals Agency (i.e., if the substance constitutes more than 0.1% of the weight of the product or any component of the product, if applicable).

_

 $^{^{1}\,1}$ kg biogenic carbon in the product/packaging is equal to 44/12 kg of CO_{2} uptake



LCA information

Declared unit	1 kg of Alterna dishwasher switch valve
Reference service life	Not applicable as module B is not included
Technical lifespan	50-60 years
Time representativeness	The data used to model product manufacturing correspond to 2024. The data from generic databases are from 2021 – 2024. No data used is older than 5 years.
Geographical scope	Modules A1-A2 are representative of China, A3 global and A4-A5, C1-C4 and D Sweden
Database(s) and LCA software used	Calculation completed in LCA for Experts v10.9.1.19 with an integrated ecoinvent database 3.11
System boundaries	Cradle to gate, with options (A1-A3, A4-A5, C1-C4 & D)

Process flow diagram

Module D
Benefits and loads beyond the system boundary

Reuse, recycling and recovery potential

More information

The EPD covers dishwasher switch valves with different colors. The product is sold in Sweden.

A1, Raw material supply

This module considers the extraction and processing of all raw materials, energy, and transportation which occur upstream to the studied manufacturing process. The product mainly consists of plastics, rubber and metals. Generic data has been used to model the production of the materials that make up the products.

A2, transport to the manufacturer

The raw materials are transported to the manufacturing site where the production takes place. Specific data from the manufacturers' suppliers has been considered.

A3, manufacturing

This module includes the assembly of Alterna dishwasher switch valve manufactured in China. During the production processes electricity, natural gas, steam and water are used. It is assumed that the inputs and outputs from this module are distributed equally across the products per declared unit as the processes are the same across all products. This module also includes the packaging materials which are used to transport the finished products to the distribution center. The packaging material consists of cardboard, PE and paper. Data has been collected by the manufacturer from the production year 2024, the full 12 months from January 2024 to December 2024. This module also includes the transportation between the manufacturing factory in China to Saint-Gobain distribution centers in Sweden, which is calculated using Searates.

Transportation type	Distance (km)
Ship	19 200
Truck	300

Electricity used in manufacturing:

The electricity used in the modelling is based on the energy mix of China from International Energy Agency (2023). The GWP-GHG values for the manufacturing stage impacts are 0,871 kg CO₂-eq./kWh.

A4, Transport

This stage includes transportation from Saint-Gobain's distribution centers out to the installation sites. The transportation distance to the installation sites is based on an average representative transportation of 350 km.

Scenario information	Unit (expressed per declared
	unit)
Fuel type and consumption of vehicle or vehicle type	Average truck trailer with a 27 t
used for transport e.g. long distance truck, boat etc.	payload and 0,019 l/tkm diesel
Distance	350 km
Capacity utilization (including empty returns)	61% for truck
Volume capacity utilization factor (factor: =1 or <1	Not applicable
or 1 for compressed or nested packaged products	1 vot applicable

A5, Construction installation

It has been assumed that the installation is done by hand and therefore has negligible impact. This stage also includes the waste management of the packaging that arises on the installation site. The waste rates of the different packaging materials are based on Swedish Statistics (SCB, 2020) as the waste management occurs in Sweden.

Material	Recycling (%)	Incineration (%)	Landfill (%)
Biogenic material	0	100	0
Plastic	26	74	0

B1-B7 Use stage

This stage is not declared.

C1 Deconstruction/Demolition

This stage includes the de-construction of Alterna dishwasher switch valve. It is assumed that the deconstruction is done manually and therefore has a negligible impact.

C2 Transport

This module represents the transport distance to the waste processing facility. It is assumed that the transportation distance to the waste processing facility is 50 km.

C3 Waste processing

This module includes any waste treatment needed from recycling and incineration.

C4 Final disposal

This module includes any material that is landfilled.

Processes	Unit (expressed per declared unit)
Collection process specified by type	1 kg collected
	0 kg collected with mixed construction waste
Recovery system specified by type	0 kg for re-use
	0,947 kg for recycling
	0,003 kg for energy recovery
Disposal specified by type	0,050 kg product or material for final deposition
Assumptions for scenario development, e.g. transportation	The transportation is modelled with an average truck trailer with a 27 t payload and 0,019 t/km

100% scenarios

In addition to the most probable end-of-life stage scenario, 100% scenarios have been modelled to give other perspectives. The 100% scenarios have been modelled in accordance with the default values given in table 4 of PCR2019:14 Version 2.0, to complement other processes in the end-of-life stage. Values for the end-of-life stage for the 100% scenarios are described in the table below.

Module	Processes	Energy carrier	Quantity [kWh/tonne]	Weight considered [kg]
	Demolition/deconstruction of concrete/reinforced concrete	Diesel	10	0
C1	Demolition/deconstruction of masonry, tiles and paver blocks	Diesel	5	0
	Demolition/deconstruction of steel, wood and other materials	Diesel	1.1	1
Module	Processes	Distance [km]	Weight consid	lered [kg]
C2	Transports (for materials not to be incinerated)	80	0,997	
C2	Transports (for materials to be incinerated)	130	0,003	
Module	Processes	Energy carrier	Quantity [kWh/tonne]	Weight considered [kg]
	Loading and unloading at sorting facility	Diesel	1.8	1
	Mechanical sorting	Electricity	2.2	1
	Crushing of concrete	Diesel	2.0	0
C3	Crushing of masonry, tiles and paver blocks	Diesel	1.5	0
	Fragging of steel	Diesel	7.4	0,996
	Chipping of wood	Diesel	6.0	0
	Treatment of other materials	Diesel	0.8	0,003
C4	Compacting of inert construction waste for landfills (including backfilling)	Diesel	1.6	0,050

D Benefits and loads beyond the system boundary

This module includes loads and benefits obtained from energy recovery and/or recycling materials.

Omissions of life cycle stages

The following flows were excluded from the system boundary:

- A1-A3: The plants, production of machines and transportation systems are excluded since the related flows are supposed to be negligible compared to the potential environmental impacts through the life cycle of the product
- **B1-B7**: The use phase of the products is not included

In addition, the following flows are excluded from the system boundaries:

Flows related to human activities, such as employee transport

Cut-off criteria

The following procedures were followed for the exclusion of inputs and output.

- All input and output flows in a unit process were considered i.e., taking into account the value of all flows in the unit process and the corresponding LCI where data was available
- Data gaps were filled by conservative assumptions with average or generic data. Any assumptions in such cases were documented
- The use of cut-off criterion on mass inputs and primary energy at the unit process level (1%) and at the information module level (5%)

All hazardous and toxic materials and substances are included in the inventory, and the cut-off rules do not apply.

Allocation

Allocation criteria are based on mass.

Modules declared and geographical scope

	Pro	duct s	tage		embly age		Use stage						End of life stage				Benefits & loads beoyond system boundary
	Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
Modules	A1	A2	A3	A4	A5	B1	B2	В3	B4	В5	В6	B 7	C1	C2	С3	C4	D
Modules declared	X	X	X	X	X	ND	ND	ND	ND	ND	ND	ND	X	X	X	X	X
Geography	CN	CN	CN	SE	SE	-	-	-	-	-	-	-	SE	SE	SE	SE	SE
Specific data used	2	21,1%	*	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation products		<10%		-	-	-	-	-	-	-	-	-	-	-	-	-	-
Variation sites		0%		-	-	-	-	-	-	-	-	-	-	-	-	-	-

^{*}The specific data is based on the amount of impact that derives from the impact indicator GWP-GHG for modules A1-A3.

Declaration of data sources, reference years, and share of primary data:

Process	Source type	Source	Reference year	Data category	Share of primary data, of GWP-GHG results for A1- A3
Manufacturing of product	Collected data	EPD owner	2021- 2024	Primary data	0,8%
Transport of components to production site	Collected data	EPD owner, ecoinvent 3.11	2021- 2022	Primary data	0,3%
Transport of product to SGDS	Collected data	EPD owner, ecoinvent 3.11	2021- 2022	Primary data	20%
Production of components	Database	Ecoinvent v3.11, Shpera	2010- 2024	Representative generic data	0%
Production of packaging	Database	Ecoinvent v3.11, Shpera	2021- 2024	Representative generic data	0%
Other processes	Database	Ecoinvent v3.11, Shpera	2021- 2024	Representative generic data, proxy data	0%
Total share of primary data, of GWP-GHG results for A1-A3	21,1%				

Summary of data quality:

The data quality detailed above is considered being fair as majority of the data has been collected by the manufacturer, but the datasets used represent a fair geographical scope due to unavailable datasets. As majority of that data has the largest contribution to the climate impact of the products, the data quality has been deemed fair.

Environmental Information

The estimated impact results are only relative statements, which do not indicate the endpoints of the impact categories, exceeding threshold values, safety margins and/or risks. As module C is included in the EPD, it is discouraging the use of the results of modules A1-A3 without considering the results of module C.

Mandatory impact category indicators according to EN 15804, EF 3.1

			Results p	er declared unit:	1 kg				
Indicator	Unit	A1-A3	A4	A5	C1	C2	С3	C4	D
GWP-total	kg CO2 eq	9,57E+00	9,18E-02	4,37E+00	3,62E-04	1,31E-02	3,84E-03	8,95E-03	-2,77E+00
GWP-fossil	kg CO2 eq	1,15E+01	9,07E-02	2,25E+00	3,62E-04	1,29E-02	3,81E-03	8,94E-03	-2,73E+00
GWP-biogenic	kg CO2 eq	-1,93E+00	2,17E-04	2,12E+00	4,02E-08	3,08E-05	2,32E-05	3,53E-06	-2,13E-02
GWP-luluc	kg CO2 eq	2,23E-02	9,30E-04	9,53E-05	3,71E-08	1,32E-04	2,65E-06	3,40E-06	-1,73E-02
ODP	kg CFC-11 eq	1,57E-07	1,50E-14	5,46E-10	5,38E-12	2,33E-15	4,61E-11	1,23E-13	-2,34E-12
AP	mole H+ eq	3,74E-01	1,96E-04	6,62E-04	3,24E-06	8,55E-05	2,87E-05	7,47E-06	-4,90E-03
EP-freshwater	kg P eq	2,47E-02	2,44E-07	1,03E-05	1,17E-08	3,45E-08	1,34E-07	1,81E-09	-2,10E-06
EP-marine	kg N eq	3,81E-02	8,66E-05	2,33E-04	1,51E-06	4,22E-05	1,31E-05	1,81E-06	-9,72E-04
EP-terrestrial	mole N eq	4,28E-01	9,30E-04	2,83E-03	1,65E-05	4,60E-04	1,42E-04	2,17E-05	-9,51E-03
POCP	kg NMVOC eq	1,26E-01	1,77E-04	6,16E-04	4,94E-06	8,12E-05	4,22E-05	5,61E-06	-3,43E-03
ADP-minerals & metals ²	kg Sb eq	4,18E-03	6,01E-09	2,67E-07	1,29E-10	8,54E-10	2,15E-09	7,97E-11	-9,21E-06
ADP-fossil ²	MJ	2,03E+02	1,16E+00	1,16E+00	4,67E-03	1,65E-01	5,40E-02	1,83E-02	-4,13E+01
WDP ²	m3	6,96E+00	4,13E-04	3,25E-01	1,43E-05	6,08E-05	3,22E-04	8,51E-04	-1,99E-01
Acronyms	GWP-fossil = Glob and land use change Eutrophication pote marine end compart minerals&metals = deprivation potentia	g; ODP = Depletion ntial, fraction of nut ment; EP-terrestria Abiotic depletion p	potential of the st rients reaching fre al = Eutrophicatio potential for non-f	ratospheric ozone eshwater end comp n potential, Accur ossil resources; A	layer; AP = Acid partment; EP-ma nulated Exceedan	ification potenti rine = Eutrophic ce; POCP = Fo	al, Accumulated cation potential, rmation potential	I Exceedance; EP fraction of nutrieral of tropospheric	-freshwater = nts reaching ozone; ADP-

² The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator

Resource use indicators

				Results	per declared unit:	1 kg			
Indicator	Unit	A1-A3	A4	A5	C1	C2	С3	C4	D
PERE	MJ	3,57E+01	8,73E-02	1,76E-01	2,97E-05	1,25E-02	9,57E-03	3,08E-03	-1,08E+01
PERM	MJ	2,31E+01	0,00E+00	-2,31E+01	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PERT	MJ	5,88E+01	8,73E-02	-2,29E+01	2,97E-05	1,25E-02	9,57E-03	3,08E-03	-1,08E+01
PENRE	MJ	2,03E+02	1,16E+00	1,16E+00	4,67E-03	1,65E-01	5,40E-02	1,83E-02	-4,13E+01
PENRM	MJ	4,87E+01	0,00E+00	-4,86E+01	0,00E+00	0,00E+00	0,00E+00	-8,62E-02	0,00E+00
PENRT	MJ	2,52E+02	1,16E+00	-4,75E+01	4,67E-03	1,65E-01	5,40E-02	-6,79E-02	-4,13E+01
SM	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
FW	m3	1,66E-01	4,31E-05	7,62E-03	3,33E-07	6,21E-06	1,08E-05	2,07E-05	-1,77E-01

Acronyms

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; **PERM** = Use of renewable primary energy resources used as raw materials; **PERM** = Total use of renewable primary energy resources used as raw materials; **PENRM** = Use of non-renewable primary energy resources; **SM** = Use of secondary material; **RSF** = Use of renewable secondary fuels; **NRSF** = Use of non-renewable secondary fuels; **FW** = Use of non-renewable primary energy resources; **SM** = Use of secondary material; **RSF** = Use of renewable secondary fuels; **FW** = Use of non-renewable secondary fuels;

Additional mandatory and voluntary impact category indicators

	Results per declared unit: 1 kg												
Indicator	Unit	A1-A3	A4	A5	C1	C2	C3	C4	D				
GWP-GHG ³	kg CO2 eq	1,17E+01	9,18E-02	2,25E+00	3,62E-04	1,30E-02	3,84E-03	8,95E-03	-2,76E+00				
Acronyms	GWP-GHG = glob	oal warming potenti	al - greenhouse ga	ases									

Waste indicators

	Results per declared unit: 1 kg													
Indicator	Unit	A1-A3	A 4	A5	C1	C2	С3	C4	D					
HWD	kg	1,51E+00	4,65E-11	3,51E-03	4,18E-06	6,82E-12	4,70E-05	9,25E-08	-1,75E-07					
NHWD	kg	1,63E+01	1,62E-04	1,25E-01	3,10E-05	2,31E-05	5,83E-04	4,98E-02	1,45E-01					
RWD	kg	2,99E-04	2,19E-06	2,91E-05	0,00E+00	3,38E-07	2,13E-06	2,93E-07	-2,92E-03					
Acronyms	HW = Haz	zardous waste dispos	sed; NHW = Non-h	azardous waste dispo	osed; RW = Radioact	ive waste disposed								

_

³ This indicator accounts for all greenhouse gases except biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. As such, the indicator is identical to GWP-total except that the CF for biogenic CO2 is set to zero

Output flow indicators

				Results	per declared unit: 1	l kg			
Indicator	Unit	A1-A3	A4	A5	Cl	C2	С3	C4	D
CRU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MFR	kg	6,11E-04	0,00E+00	2,73E-01	0,00E+00	0,00E+00	9,47E-01	0,00E+00	0,00E+00
MER	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
EEE	MJ	0,00E+00	0,00E+00	6,03E+00	0,00E+00	0,00E+00	0,00E+00	1,68E-02	0,00E+00
EET	MJ	0,00E+00	0,00E+00	1,08E+01	0,00E+00	0,00E+00	0,00E+00	2,99E-02	0,00E+00
Acronyms	$\mathbf{CRU} = \mathbf{Co}$	mponents for reuse;	MFR = Materials for	recycling; MER = N	Materials for energy r	ecovery; $\mathbf{EEE} = \mathbf{Exp}$	orted electric energy;	ETE = Exported then	mal energy

Information on biogenic carbon content

Biogenic carbon content	Unit per declared unit	Amount
Biogenic carbon content in product	kg C	0,00E+00
Biogenic carbon content in packaging	kg C	5,76E-01

¹ kg biogenic carbon is equivalent to 44/12 kg CO2.

Additional Environmental Information

In addition to the most probable scenario, results from the corresponding 100% scenarios are added in this section.

Mandatory impact category indicators according to EN 15804, EF 3.1

					R	esults per de	eclared unit: 1	l kg						
Indicator	Unit	C1 100%	C2 100% RC	C2 100% INC	C2 100% LF	C3 100% RC	C3 100% INC	C3 100% LD	C4 100% RC	C4 100% INC	C4 100% LF	D 100% RC	D 100% INC	D 100% LF
GWP-total	kg CO2 eq	3,62E-04	1,27E-02	4,31E-05	1,26E-02	4,60E-03	1,06E-02	0,00E+00	0,00E+00	0,00E+00	2,14E-02	-1,69E+00	-3,01E-03	0,00E+00
GWP-fossil	kg CO2 eq	3,62E-04	1,28E-02	4,37E-05	1,28E-02	4,51E-03	1,06E-02	0,00E+00	0,00E+00	0,00E+00	2,13E-02	-1,70E+00	-2,90E-03	0,00E+00
GWP-biogenic	kg CO2 eq	7,34E-08	-2,83E-04	-9,64E-07	-2,82E-04	8,13E-05	3,45E-07	0,00E+00	0,00E+00	0,00E+00	-3,00E-05	9,99E-03	-5,44E-05	0,00E+00
GWP-luluc	kg CO2 eq	3,71E-08	1,32E-04	4,48E-07	1,31E-04	3,26E-06	9,81E-08	0,00E+00	0,00E+00	0,00E+00	6,66E-05	-2,28E-04	-4,84E-05	0,00E+00
ODP	kg CFC-11 eq	5,38E-12	2,12E-15	7,22E-18	2,12E-15	5,41E-11	3,76E-14	0,00E+00	0,00E+00	0,00E+00	2,45E-12	2,26E-12	-9,26E-15	0,00E+00
AP	mole H+ eq	3,24E-06	8,44E-05	2,87E-07	8,41E-05	3,21E-05	1,10E-06	0,00E+00	0,00E+00	0,00E+00	1,34E-04	-4,15E-03	-2,33E-06	0,00E+00
EP-freshwater	kg P eq	1,17E-08	3,45E-08	1,17E-10	3,44E-08	2,45E-07	1,58E-10	0,00E+00	0,00E+00	0,00E+00	3,51E-08	-4,05E-07	-2,66E-09	0,00E+00
EP-marine	kg N eq	1,51E-06	4,20E-05	1,43E-07	4,18E-05	1,47E-05	2,42E-07	0,00E+00	0,00E+00	0,00E+00	3,29E-05	-6,67E-04	-8,60E-07	0,00E+00
EP-terrestrial	mole N eq	1,65E-05	4,57E-04	1,56E-06	4,56E-04	1,55E-04	5,19E-06	0,00E+00	0,00E+00	0,00E+00	3,58E-04	-5,98E-03	-9,76E-06	0,00E+00
POCP	kg NMVOC eq	4,94E-06	8,05E-05	2,74E-07	8,02E-05	4,67E-05	7,19E-07	0,00E+00	0,00E+00	0,00E+00	1,02E-04	-2,71E-03	-2,19E-06	0,00E+00
ADP-minerals & metals ⁴	kg Sb eq	1,29E-10	8,51E-10	2,89E-12	8,48E-10	4,94E-09	8,08E-12	0,00E+00	0,00E+00	0,00E+00	1,50E-09	-9,60E-06	-1,97E-10	0,00E+00
ADP-fossil ²	MJ	4,67E-03	1,64E-01	5,58E-04	1,63E-01	6,31E-02	1,33E-03	0,00E+00	0,00E+00	0,00E+00	3,48E-01	-1,69E+01	-6,83E-02	0,00E+00
WDP^2	m3	1,43E-05	5,85E-05	1,99E-07	5,83E-05	4,49E-04	9,83E-04	0,00E+00	0,00E+00	0,00E+00	2,48E-03	-1,15E-01	-2,10E-04	0,00E+00
Acronyms	GWP-fossil = Glo Depletion potentia end compartment; Formation potentia Water (user) depri	l of the stratosp EP-marine = al of tropospher	oheric ozone l Eutrophication ric ozone; AD	ayer; AP = A n potential, fr P-minerals&	cidification p action of nutr ametals = Ab	otential, Acc rients reachin piotic depletic	umulated Exce g marine end o	eedance; EP-1 compartment;	freshwater = EP-terrestri	Eutrophication	on potential, ication poten	fraction of nutr tial, Accumulat	ients reaching fed Exceedance	freshwater e; POCP =

⁴ The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator

Resource use indicators

						Result	s per declare	d unit: 1 kg						
Indicator	Unit	C1 100%	C2 100% RC	C2 100% INC	C2 100% LF	C3 100% RC	C3 100% INC	C3 100% LD	C4 100% RC	C4 100% INC	C4 100% LF	D 100% RC	D 100% INC	D 100% LF
PERE	MJ	2,97E-05	1,24E-02	4,20E-05	1,23E-02	1,04E-02	3,76E-04	0,00E+00	0,00E+00	0,00E+00	5,65E-02	6,56E-01	-3,04E-02	0,00E+00
PERM	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PERT	MJ	2,97E-05	1,24E-02	4,20E-05	1,23E-02	1,04E-02	3,76E-04	0,00E+00	0,00E+00	0,00E+00	5,65E-02	6,56E-01	-3,04E-02	0,00E+00
PENRE	MJ	4,67E-03	1,64E-01	5,58E-04	1,63E-01	6,31E-02	1,33E-03	0,00E+00	0,00E+00	0,00E+00	3,48E-01	-1,69E+01	-6,83E-02	0,00E+00
PENRM	MJ			0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
PENRT	MJ	4,67E-03	1,64E-01	5,58E-04	1,63E-01	6,31E-02	1,33E-03	0,00E+00	0,00E+00	0,00E+00	3,48E-01	-1,69E+01	-6,83E-02	0,00E+00
SM	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
RSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
NRSF	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
FW	m3	3,33E-07	6,11E-06	2,08E-08	6,09E-06	1,39E-05	2,30E-05	0,00E+00	0,00E+00	0,00E+00	7,31E-05	-1,71E-01	-3,92E-05	0,00E+00
Acronyms	raw m used a	aterials; PER s raw materia	T = Total use als; PENRM	e of renewabl = Use of non-	e primary ene -renewable pr	rgy resources imary energy	s; PENRE = U	Use of non-re ed as raw mat	newable primerials; PENR	PERM = Use pary energy executed T = Total use by fuels; FW =	cluding non- e of non-renev	renewable pr wable primary	imary energy	resources

PAGE 18/27

Additional mandatory and voluntary impact category indicators

	Results per declared unit: 1 kg													
Indicator	Unit	C1 100%	C2 100% RC	C2 100% INC	C2 100% LF	C3 100% RC	C3 100% INC	C3 100% LD	C4 100% RC	C4 100% INC	C4 100% LF	D 100% RC	D 100% INC	D 100% LF
GWP- GHG ⁵	kg CO2 eq	3,62E-04	1,30E-02	4,42E-05	1,30E-02	4,58E-03	1,06E-02	0,00E+00	0,00E+00	0,00E+00	2,15E-02	-1,70E+00	-3,01E-03	0,00E+00
Acronyms	GWP-GH	G = global w	arming pote	ntial - greenh	ouse gases									

Waste indicators

	Results per declared unit: 1 kg													
Indicator	Unit	C1 100%	C2 100% RC	C2 100% INC	C2 100% LF	C3 100% RC	C3 100% INC	C3 100% LD	C4 100% RC	C4 100% INC	C4 100% LF	D 100% RC	D 100% INC	D 100% LF
HWD	kg	4,18E-06	6,58E-12	2,24E-14	6,55E-12	8,49E-05	2,87E-08	0,00E+00	0,00E+00	0,00E+00	1,85E-06	-1,27E-07	-4,63E-11	0,00E+00
NHWD	kg	3,10E-05	2,29E-05	7,79E-08	2,28E-05	1,50E-03	4,24E-05	0,00E+00	0,00E+00	0,00E+00	1,00E+00	2,04E-01	-4,21E-05	0,00E+00
RWD	kg	0,00E+00	3,09E-07	1,05E-09	3,08E-07	2,24E-06	7,94E-08	0,00E+00	0,00E+00	0,00E+00	4,80E-06	-3,40E-07	-7,84E-06	0,00E+00
Acronyms HW = Hazardous waste disposed; NHW = Non-hazardous waste disposed; RW = Radioactive waste disposed														

_

⁵ This indicator accounts for all greenhouse gases except biogenic carbon dioxide uptake and emissions and biogenic carbon stored in the product. As such, the indicator is identical to GWP-total except that the CF for biogenic CO2 is set to zero

Output flow indicators

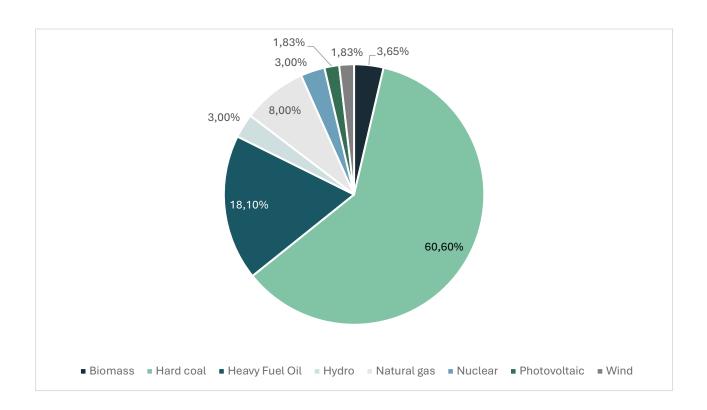
Results per declared unit: 1 kg														
Indicator	Unit	C1 100%	C2 100% RC	C2 100% INC	C2 100% LF	C3 100% RC	C3 100% INC	C3 100% LD	C4 100% RC	C4 100% INC	C4 100% LF	D 100% RC	D 100% INC	D 100% LF
CRU	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MFR	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
MER	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
EEE	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	2,27E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
EET	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	4,04E-02	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00
Acronyms	Acronyms CRU = Components for reuse; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported electric energy; ETE = Exported thermal energy													

Disclaimers

ILCD classification	Indicator	Disclaimer
	Global warming potential (GWP)	None
ILCD Type 1	Depletion potential of the stratospheric ozone layer (ODP)	None
	Potential incidence of disease due to PM emissions (PM)	None
	Acidification potential, Accumulated Exceedance (AP)	None
	Eutrophication potential, Fraction of nutrients reaching freshwater end compartment (EP-freshwater)	None
ILCD Type 2	Eutrophication potential, Fraction of nutrients reaching marine end compartment (EP-marine)	None
	Eutrophication potential, Accumulated Exceedance (EP-terrestrial)	None
	Formation potential of tropospheric ozone (POCP)	None
	Potential Human exposure efficiency relative to U235 (IRP)	1
	Abiotic depletion potential for non-fossil resources (ADP-minerals&metals)	2
	Abiotic depletion potential for fossil resources (ADP-fossil)	2
	Water (user) deprivation potential, deprivation-weighted	2
II CD Tyme 2	Water consumption (WDP)	2
ILCD Type 3	Potential Comparative Toxic Unit for ecosystems (ETP-fw)	2
	Potential Comparative Toxic Unit for humans (HTP-c)	2
	Potential Comparative Toxic Unit for humans (HTP-nc)	2
	Potential Soil quality index (SQP)	2

Disclaimer 1 – This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

Disclaimer 2 – The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.



Additional information

Greenhouse gas emission from the use of electricity in the manufacturing phase.

Residual mix	Unit	Value				
Location		China – Fujian region				
		Biomass: 3,65% Hard coal: 60,60%				
		Heavy Fuel Oil: 18,10%				
Electricity mix		Hydro: 3,00%				
Electricity mix		Natural gas: 8,00%				
		Nuclear: 3,00%				
		Photovoltaic: 1,83%				
		Wind: 1,83%				
Reference year		2023				
Source		International Energy Agency				
GWP excl. Biogenic	kg CO ₂ -eq. /kWh	0,886				

Abbreviations

Abbreviation	Definition				
General Abbreviations					
EN	European Norm (Standard)				
EF	Environmental Footprint				
GPI	General Programme Instructions				
ISO	International Organization for Standardization				
CEN	European Committee for Standardization				
CPC	Central product classification				
SVHC	Substances of Very High Concern				
ND	Not Declared				
CN	China				
GLO	Global				
SE	Sweden				

References

Dahl SE Dahl https://www.dahl.se/

Ecoinvent (2025) Ecoinvent dataset version 3.11 (2025)

EN15804:2012+A2:AC/2021 Sustainability of construction works – Environmental product

declaration – Core rules for the product category of

constructions products

EPD International (2024) General Programme Instructions of the International EPD®

System, version 5.0

ISO 14020:2022 International Standard ISO 14020 – Environmental statements

and programmes for products – Principles and general

requirements

ISO 14025:2006 International Standard ISO 14025 – Environmental labels and

declarations — Type III environmental declarations —

Principles and procedures

ISO 14040:2006 International Standard ISO 14040: Environmental Management

– Life cycle assessment – Principles and framework. Second

edition 2006-07-01.

ISO 14044:2006 International Standard ISO 14044: Environmental Management

- Life cycle assessment - Requirements and Guidelines

International Energy Agency IEA (2023) China energy mix

PCR 2019:14 Construction products v 2.0.1

SCB (2020) Treated waste by treatment category and waste category. Every

second year 2010-2020.

https://www.statistikdatabasen.scb.se/pxweb/sv/ssd/START

MI MI0305/MI0305T003/

Sphera (2025) LCA for Experts. MLC database CUP 2024.02.

Version history

Original Version of the EPD, 2025-09-25

Contact information

EPD owner:	Saint-Gobain Distribution Sweden Email: beriar.maroof@saint-gobain.se Telephone: +46 20 58 30 00 Address: Bryggerivägen 9, 168 67 Bromma, Sweden				
LCA author:	Fanni Végvári Email: fanni.vegvari@carbonzero.se Telephone: +46 73 854 90 52 Address: CarbonZero AB, Tåstrupsgatan 2, SE-262 32 Ängelholm, Sweden				
Third party verifier:	Viridis Pride Viridis Pride Ltd Stephen Forson Email: s.forson@viridispride.com				
Program operator:	INTERNATIONAL EPD SYSTEM EPD International AB info@environdec.com				

