Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain v3.5.64

Product: 3062863 - X-Stream PP Branch 45° BK 500/500

Unit: 1 Piece

Manufacturer: Wavin - SE - Eskilstuna

Wavin X-Stream is a new generation of double-walled pipes and fittings made of polypropylene. The system is suitable for pressureless transport of rainwater and wastewater.

LCA standard: EN15804+A2 (2019)

Standard database: Worldwide - Ecoinvent v 3.6 Cut-Off

Externally verified: Yes

Issue date: 20-06-2022 End of validity: 20-06-2027

Verifier: Harry van Ewijk - SGS Search

An Orbia business

This LCA was evaluated according to EN15804+A2. It was concluded that the LCA complies with this standard.

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - SE - Eskilstuna (2020). (= module declared, MND = module not declared).

A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D
MND	MND	$\overline{\square}$	MND	MND	MND	MND	MND	MND	MND	MND	MND	MND	\square		$\overline{\square}$	
Product stage Use stage										End-of-Life st	age					
A1 Raw material supply A2 Transport A3 Manufacturing				·						C1 De-construction demolition C2 Transport C3 Waste processing						
Construction process stage				B6 Operational energy use B7 Operational water use						C4 Disposal						
A4 Transport gate to site										Benefits and loads beyond the system boundaries						
A4 Transport gate to site A5 Assembly / Construction installation process											D Reuse- Recov	very- Recycling	g- potential			

Environmental impacts and parameters

GWP-total = EF Climate Change [kg CO2 eq]; GWP-f = EF Climate change - Fossil [kg CO2 eq]; GWP-b = EF Climate Change - Land use and LU change [kg CO2 eq]; GWP-m = EF Climate Change - Biogenic [kg CO2 eq]; GWP-b = EF Climate Change - Land use and LU change [kg CO2 eq]; GWP-m = EF Climate Change - Biogenic [kg CO2 eq]; GWP-b = EF Climate Change - Land use and LU change [kg CO2 eq]; GWP-m = EF Climate Change - Land use and LU change [kg CO2 eq]; GWP-b = EF Climate Change - Land use and LU change [kg CO2 eq]; GWP-f = EF Climate Change - Land use [kg CO2 eq]; GWP-b = EF Climate Change - Land us

Statement of Confidentiality

This document and supporting material contain confidential and proprietary business information of Wavin - SE - Eskilstuna. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - SE - Eskilstuna.

Results

Environmental impact	Unit	А3	A1-A3	C2	C3	C4	D	Total
GWP-total	kg CO2 eq	3.81E+0	3.81E+0	0	0	0	0	3.81E+0
GWP-f	kg CO2 eq	2.76E+0	2.76E+0	0	0	0	0	2.76E+0
GWP-b	kg CO2 eq	7.27E-1	7.27E-1	0	0	0	0	7.27E-1
GWP-Iuluc	kg CO2 eq	3.21E-1	3.21E-1	0	0	0	0	3.21E-1
ODP	kg CFC11 eq	3.13E-7	3.13E-7	0	0	0	0	3.13E-7
AP	mol H+ eq	2.34E-2	2.34E-2	0	0	0	0	2.34E-2
EP-fw	kg P eq	5.10E-5	5.10E-5	0	0	0	0	5.10E-5
EP-m	kg N eq	6.93E-3	6.93E-3	0	0	0	0	6.93E-3
EP-T	mol N eq	7.61E-2	7.61E-2	0	0	0	0	7.61E-2
POCP	kg NMVOC eq	2.11E-2	2.11E-2	0	0	0	0	2.11E-2
ADP-mm	kg Sb eq	8.31E-5	8.31E-5	0	0	0	0	8.31E-5
ADP-f	MJ	2.74E+1	2.74E+1	0	0	0	0	2.74E+1
WDP	m3 depriv.	1.77E+1	1.77E+1	0	0	0	0	1.77E+1
PM	disease inc.	3.95E-7	3.95E-7	0	0	0	0	3.95E-7
IR .	kBq U-235 eq	8.16E-2	8.16E-2	0	0	0	0	8.16E-2
ETP-fw	CTUe	7.65E+1	7.65E+1	0	0	0	0	7.65E+1
HTP-c	CTUh	3.02E-9	3.02E-9	0	0	0	0	3.02E-9
HTP-nc	CTUh	8.24E-8	8.24E-8	0	0	0	0	8.24E-8
SQP	Pt	3.61E+0	3.61E+0	0	0	0	0	3.61E+0
Resource use	Unit	А3	A1-A3	C2	C3	C4	D	Total
PERE	MJ	1.73E+2	1.73E+2	0	0	0	0	1.73E+2
PERM	MJ	0	0	0	0	0	0	0
PERT	MJ	1.73E+2	1.73E+2	0	0	0	0	1.73E+2
PENRE	MJ	2.92E+1	2.92E+1	0	0	0	0	2.92E+1
PENRM	MJ	0	0	0	0	0	0	0
PENRT	MJ	2.92E+1	2.92E+1	0	0	0	0	2.92E+1
PET	MJ	2.02E+2	2.02E+2	0	0	0	0	2.02E+2
SM	kg	0	0	0	0	0	0	0
RSF	MJ	0	0	0	0	0	0	0
NRSF	MJ	0	0	0	0	0	0	0
FW	m3	4.20E-1	4.20E-1	0	0	0	0	4.20E-1

Output flows and waste categories	Unit	А3	A1-A3	C2	C3	C4	D	Total
HWD	kg	4.18E-5	4.18E-5	0	0	0	0	4.18E-5
NHWD	kg	1.28E-1	1.28E-1	0	0	0	0	1.28E-1
RWD	kg	1.16E-4	1.16E-4	0	0	0	0	1.16E-4
CRU	kg	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0
EE	МЈ	0	0	0	0	0	0	0
EET	МЈ	0	0	0	0	0	0	0
EEE	МЭ	0	0	0	0	0	0	0

Ecochain Technologies BV H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands https://www.ecochain.com +31 20 3035 777