Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3067759-$ SiTech+ Branch Reduced STEA 45
Unit: 110×90	
Manufacturer:	1 piece
	Wavin - IT - SM Maddalena

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:
Martijn van Hövell - SGS Search

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - IT - SM Maddalena (2020). ($\mathbf{V}=\mathrm{module} \mathrm{declared} ,\mathrm{MND} \mathrm{=} \mathrm{module} \mathrm{not} \mathrm{declared)}$

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - IT - SM Maddalena. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - IT - SM Maddalena.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	1.31E+0	$2.68 \mathrm{E}-2$	$9.68 \mathrm{E}-2$	$1.44 \mathrm{E}+0$	$1.75 \mathrm{E}-2$	$8.24 \mathrm{E}-1$	$8.41 \mathrm{E}-3$	-8.12E-1	$1.48 \mathrm{E}+0$
GWP-f		kg CO2 eq	$1.50 \mathrm{E}+0$	$2.68 \mathrm{E}-2$	$8.28 \mathrm{E}-2$	$1.61 \mathrm{E}+0$	$1.75 \mathrm{E}-2$	$5.94 \mathrm{E}-1$	$8.41 \mathrm{E}-3$	-9.00E-1	$1.33 \mathrm{E}+0$
GWP-b		kg CO2 eq	-1.86E-1	$1.63 \mathrm{E}-5$	7.00E-3	-1.79E-1	1.06E-5	$2.30 \mathrm{E}-1$	$7.39 \mathrm{E}-6$	8.82E-2	$1.40 \mathrm{E}-1$
GWP-Iuluc		kg CO2 eq	$1.01 \mathrm{E}-3$	$9.48 \mathrm{E}-6$	$6.99 \mathrm{E}-3$	$8.01 \mathrm{E}-3$	$6.18 \mathrm{E}-6$	$9.91 \mathrm{E}-5$	$1.42 \mathrm{E}-7$	-8.80E-4	$7.24 \mathrm{E}-3$
ODP		kg CFC11 eq	5.83E-8	$6.17 \mathrm{E}-9$	$8.31 \mathrm{E}-9$	$7.27 \mathrm{E}-8$	4.02E-9	$1.41 \mathrm{E}-8$	2.12E-10	-4.31E-8	4.80E-8
AP		mol $\mathrm{H}+\mathrm{eq}$	$5.71 \mathrm{E}-3$	$1.53 \mathrm{E}-4$	$3.34 \mathrm{E}-4$	6.20E-3	$9.95 \mathrm{E}-5$	5.88E-4	$5.05 \mathrm{E}-6$	-2.85E-3	$4.04 \mathrm{E}-3$
EP-fw		kg Peq	2.87E-5	$2.20 \mathrm{E}-7$	1.29E-6	3.02E-5	$1.44 \mathrm{E}-7$	$2.89 \mathrm{E}-6$	6.54E-9	-1.79E-5	$1.53 \mathrm{E}-5$
EP-m		kg Neq	$1.04 \mathrm{E}-3$	$5.46 \mathrm{E}-5$	5.64E-5	$1.16 \mathrm{E}-3$	$3.56 \mathrm{E}-5$	$1.76 \mathrm{E}-4$	3.63E-6	-5.46E-4	8.25E-4
EP-T		mol eq	$1.15 \mathrm{E}-2$	6.01E-4	$6.34 \mathrm{E}-4$	$1.27 \mathrm{E}-2$	$3.92 \mathrm{E}-4$	$1.94 \mathrm{E}-3$	$2.05 \mathrm{E}-5$	-6.13E-3	$8.97 \mathrm{E}-3$
POCP		kg NMVOC eq	$4.95 \mathrm{E}-3$	$1.72 \mathrm{E}-4$	$1.97 \mathrm{E}-4$	5.32E-3	$1.12 \mathrm{E}-4$	6.06E-4	$7.68 \mathrm{E}-6$	-2.52E-3	$3.53 \mathrm{E}-3$
ADP-mm		kg Sb eq	$5.48 \mathrm{E}-5$	6.93E-7	2.02E-6	$5.75 \mathrm{E}-5$	4.52E-7	$2.30 \mathrm{E}-6$	$5.06 \mathrm{E}-9$	-7.46E-6	5.28E-5
ADP-f		MJ	5.09E+1	$4.11 \mathrm{E}-1$	$1.09 \mathrm{E}+0$	$5.24 \mathrm{E}+1$	$2.68 \mathrm{E}-1$	$1.77 \mathrm{E}+0$	$1.54 \mathrm{E}-2$	-2.68E+1	$2.77 \mathrm{E}+1$
WDP		m3 depriv.	$1.01 \mathrm{E}+0$	$1.26 \mathrm{E}-3$	3.86E-1	$1.39 \mathrm{E}+0$	8.23E-4	3.44E-2	7.07E-5	-5.71E-1	$8.57 \mathrm{E}-1$
PM		disease inc.	$5.72 \mathrm{E}-8$	$2.42 \mathrm{E}-9$	3.35E-9	6.29E-8	$1.58 \mathrm{E}-9$	$9.45 \mathrm{E}-9$	1.06E-10	-3.08E-8	4.33E-8
IR		kBq U-235 eq	$3.68 \mathrm{E}-2$	$1.80 \mathrm{E}-3$	1.02E-3	3.96E-2	1.17E-3	$5.48 \mathrm{E}-3$	7.19E-5	-1.88E-2	$2.74 \mathrm{E}-2$
ETP-fw		ctue	$2.04 \mathrm{E}+1$	$3.34 \mathrm{E}-1$	$1.72 \mathrm{E}+0$	$2.25 \mathrm{E}+1$	$2.18 \mathrm{E}-1$	2.20E+0	$1.39 \mathrm{E}-2$	-1.08E+1	1.41E+1
HTP-c		CTUn	4.64E-10	$1.19 \mathrm{E}-11$	9.17E-11	$5.68 \mathrm{E}-10$	7.75E-12	2.39E-10	3.74E-13	-2.57E-10	5.58E-10
HTP-nc		ctun	$1.11 \mathrm{E}-8$	3.98E-10	1.90E-9	$1.34 \mathrm{E}-8$	$2.59 \mathrm{E}-10$	$3.01 \mathrm{E}-9$	8.53E-12	-6.16E-9	$1.05 \mathrm{E}-8$
SQP		Pt	$2.18 \mathrm{E}+1$	3.52E-1	1.99E-1	$2.23 \mathrm{E}+1$	$2.29 \mathrm{E}-1$	$1.39 \mathrm{E}+0$	3.96E-2	-3.04E+1	$-6.46 \mathrm{E}+0$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$3.83 \mathrm{E}+0$	5.90E-3	3.77E+0	7.61E+0	3.85E-3	$8.56 \mathrm{E}-2$	$6.08 \mathrm{E}-4$	$-5.28 \mathrm{E}+0$	2.42E+0
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$3.83 \mathrm{E}+0$	5.90E-3	$3.77 \mathrm{E}+0$	7.61E+0	3.85E-3	8.56E-2	$6.08 \mathrm{E}-4$	$-5.28 \mathrm{E}+0$	2.42E+0
PENRE		MJ	$5.46 \mathrm{E}+1$	$4.36 \mathrm{E}-1$	1.19E+0	$5.62 \mathrm{E}+1$	$2.85 \mathrm{E}-1$	$1.89 \mathrm{E}+0$	1.64E-2	-2.89E+1	$2.95 \mathrm{E}+1$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	5.46E+1	$4.36 \mathrm{E}-1$	1.19E+0	$5.62 \mathrm{E}+1$	$2.85 \mathrm{E}-1$	$1.89 \mathrm{E}+0$	$1.64 \mathrm{E}-2$	-2.89E+1	$2.95 \mathrm{E}+1$
PET		MJ	$5.85 \mathrm{E}+1$	$4.42 \mathrm{E}-1$	$4.96 \mathrm{E}+0$	$6.39 \mathrm{E}+1$	$2.88 \mathrm{E}-1$	1.97E+0	$1.70 \mathrm{E}-2$	-3.42E+1	3.20E+1
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	1.64E-2	$4.65 \mathrm{E}-5$	$9.16 \mathrm{E}-3$	$2.56 \mathrm{E}-2$	3.03E-5	1.12E-3	1.91E-5	-1.01E-2	$1.66 \mathrm{E}-2$

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	$9.83 \mathrm{E}-6$	$1.05 \mathrm{E}-6$	$1.06 \mathrm{E}-6$	1.19E-5	6.86E-7	3.03E-6	1.85E-8	-8.65E-6	7.02E-6
NHWD	kg	8.19E-2	$2.55 \mathrm{E}-2$	$1.03 \mathrm{E}-2$	$1.18 \mathrm{E}-1$	$1.66 \mathrm{E}-2$	$8.79 \mathrm{E}-2$	6.81E-2	-3.42E-2	$2.56 \mathrm{E}-1$
RWD	kg	3.68E-5	$2.79 \mathrm{E}-6$	1.13E-6	$4.08 \mathrm{E}-5$	1.82E-6	7.01E-6	1.01E-7	-1.78E-5	3.19E-5
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31203035777

