Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3067767-$ SiTech+ Branch Reduced STEA $67,5^{\circ} 75 \times 50$
Unit:	1 piece
Manufacturer:	Wavin - IT - SM Maddalena

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:
Martijn van Hövell - SGS Search

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - IT - SM Maddalena (2020). ($\mathbf{V}=\mathrm{module} \mathrm{declared} ,\mathrm{MND} \mathrm{=} \mathrm{module} \mathrm{not} \mathrm{declared)}$

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - IT - SM Maddalena. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - IT - SM Maddalena.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$4.26 \mathrm{E}-1$	7.76E-3	$2.94 \mathrm{E}-2$	4.63E-1	5.42E-3	$2.74 \mathrm{E}-1$	$2.64 \mathrm{E}-3$	-2.51E-1	$4.93 \mathrm{E}-1$
GWP-f		kg CO2 eq	$4.83 \mathrm{E}-1$	$7.75 \mathrm{E}-3$	$2.52 \mathrm{E}-2$	5.16E-1	$5.41 \mathrm{E}-3$	2.00E-1	$2.64 \mathrm{E}-3$	-2.86E-1	$4.38 \mathrm{E}-1$
GWP-b		kg CO2 eq	-5.74E-2	$4.71 \mathrm{E}-6$	$2.13 \mathrm{E}-3$	-5.53E-2	3.29E-6	7.42E-2	$2.33 \mathrm{E}-6$	3.48E-2	$5.38 \mathrm{E}-2$
GWP-Iuluc		kg CO2 eq	3.66E-4	$2.74 \mathrm{E}-6$	$2.12 \mathrm{E}-3$	$2.49 \mathrm{E}-3$	1.92E-6	3.06E-5	$4.48 \mathrm{E}-8$	$-3.24 \mathrm{E}-4$	$2.20 \mathrm{E}-3$
ODP		kg CFC11 eq	$2.31 \mathrm{E}-8$	$1.79 \mathrm{E}-9$	$2.53 \mathrm{E}-9$	$2.74 \mathrm{E}-8$	$1.25 \mathrm{E}-9$	$4.46 \mathrm{E}-9$	$6.66 \mathrm{E}-11$	-1.46E-8	$1.86 \mathrm{E}-8$
AP		mol $\mathrm{H}+\mathrm{eq}$	$1.89 \mathrm{E}-3$	4.41E-5	$1.02 \mathrm{E}-4$	$2.03 \mathrm{E}-3$	3.08E-5	1.86E-4	$1.59 \mathrm{E}-6$	-9.15E-4	$1.34 \mathrm{E}-3$
EP-fw		kg Peq	$9.86 \mathrm{E}-6$	$6.38 \mathrm{E}-8$	3.91E-7	1.03E-5	$4.46 \mathrm{E}-8$	8.96E-7	$2.06 \mathrm{E}-9$	-6.17E-6	5.09E-6
EP-m		kg Neq	$3.48 \mathrm{E}-4$	$1.58 \mathrm{E}-5$	1.71E-5	3.81E-4	1.10E-5	5.63E-5	$1.20 \mathrm{E}-6$	-1.77E-4	$2.73 \mathrm{E}-4$
EP-T		$\mathrm{mol} \mathrm{Neq}^{\text {d }}$	3.83E-3	$1.74 \mathrm{E}-4$	$1.93 \mathrm{E}-4$	$4.19 \mathrm{E}-3$	$1.22 \mathrm{E}-4$	6.19E-4	$6.45 \mathrm{E}-6$	-1.99E-3	$2.95 \mathrm{E}-3$
POCP		kg NMVOC eq	1.62E-3	4.98E-5	5.99E-5	$1.73 \mathrm{E}-3$	3.48E-5	1.92E-4	$2.42 \mathrm{E}-6$	-8.01E-4	1.16E-3
ADP-mm		kg Sb eq	$2.38 \mathrm{E}-5$	2.00E-7	6.13E-7	$2.46 \mathrm{E}-5$	$1.40 \mathrm{E}-7$	7.21E-7	$1.59 \mathrm{E}-9$	-2.56E-6	$2.29 \mathrm{E}-5$
ADP-f		MJ	$1.62 \mathrm{E}+1$	$1.19 \mathrm{E}-1$	3.31E-1	$1.66 \mathrm{E}+1$	$8.31 \mathrm{E}-2$	$5.51 \mathrm{E}-1$	$4.86 \mathrm{E}-3$	-8.38E+0	$8.86 \mathrm{E}+0$
WDP		m3 depriv.	$3.21 \mathrm{E}-1$	3.65E-4	$1.17 \mathrm{E}-1$	$4.39 \mathrm{E}-1$	$2.55 \mathrm{E}-4$	$1.08 \mathrm{E}-2$	2.23E-5	-1.86E-1	$2.64 \mathrm{E}-1$
PM		disease inc.	$1.93 \mathrm{E}-8$	7.00E-10	$1.02 \mathrm{E}-9$	2.10E-8	4.89E-10	$2.96 \mathrm{E}-9$	$3.34 \mathrm{E}-11$	-1.02E-8	$1.43 \mathrm{E}-8$
IR		kBq U-235 eq	$1.32 \mathrm{E}-2$	$5.20 \mathrm{E}-4$	3.09E-4	1.40E-2	3.63E-4	$1.71 \mathrm{E}-3$	$2.27 \mathrm{E}-5$	-6.32E-3	$9.76 \mathrm{E}-3$
ETP-fw		ctue	7.61E+0	$9.66 \mathrm{E}-2$	$5.23 \mathrm{E}-1$	$8.23 \mathrm{E}+0$	$6.75 \mathrm{E}-2$	$7.15 \mathrm{E}-1$	$4.57 \mathrm{E}-3$	-3.91E+0	5.11E+0
HTP-c		cTUn	$1.55 \mathrm{E}-10$	3.44E-12	$2.79 \mathrm{E}-11$	1.87E-10	$2.40 \mathrm{E}-12$	7.41E-11	$1.18 \mathrm{E}-13$	-8.37E-11	1.80E-10
HTP-nc		ctun	$3.74 \mathrm{E}-9$	1.15E-10	5.78E-10	$4.43 \mathrm{E}-9$	$8.05 \mathrm{E}-11$	$9.44 \mathrm{E}-10$	2.73E-12	-2.05E-9	$3.41 \mathrm{E}-9$
SQP		Pt	7.10E+0	1.02E-1	$6.03 \mathrm{E}-2$	$7.26 \mathrm{E}+0$	7.11E-2	$4.30 \mathrm{E}-1$	$1.25 \mathrm{E}-2$	-1.07E+1	-2.95E+0
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	$1.26 \mathrm{E}+0$	$1.71 \mathrm{E}-3$	$1.15 \mathrm{E}+0$	$2.41 \mathrm{E}+0$	$1.19 \mathrm{E}-3$	$2.65 \mathrm{E}-2$	$1.92 \mathrm{E}-4$	-1.87E+0	$5.64 \mathrm{E}-1$
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$1.26 \mathrm{E}+0$	$1.71 \mathrm{E}-3$	$1.15 \mathrm{E}+0$	$2.41 \mathrm{E}+0$	$1.19 \mathrm{E}-3$	$2.65 \mathrm{E}-2$	1.92E-4	-1.87E+0	$5.64 \mathrm{E}-1$
PENRE		MJ	$1.73 \mathrm{E}+1$	1.26E-1	3.61E-1	$1.78 \mathrm{E}+1$	8.82E-2	5.87E-1	5.16E-3	-9.03E+0	$9.46 \mathrm{E}+0$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$1.73 \mathrm{E}+1$	1.26E-1	$3.61 \mathrm{E}-1$	$1.78 \mathrm{E}+1$	$8.82 \mathrm{E}-2$	5.87E-1	5.16E-3	$-9.03 \mathrm{E}+0$	$9.46 \mathrm{E}+0$
PET		MJ	$1.86 \mathrm{E}+1$	1.28E-1	$1.51 \mathrm{E}+0$	2.02E+1	$8.94 \mathrm{E}-2$	$6.14 \mathrm{E}-1$	$5.35 \mathrm{E}-3$	-1.09E+1	$1.00 \mathrm{E}+1$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	$5.40 \mathrm{E}-3$	$1.35 \mathrm{E}-5$	$2.78 \mathrm{E}-3$	8.19E-3	$9.41 \mathrm{E}-6$	3.67E-4	$6.01 \mathrm{E}-6$	-3.41E-3	5.17E-3

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	$3.45 \mathrm{E}-6$	3.04E-7	3.22E-7	4.08E-6	2.13E-7	$9.60 \mathrm{E}-7$	$5.84 \mathrm{E}-9$	-2.89E-6	2.37E-6
NHWD	kg	2.81E-2	7.37E-3	3.14E-3	3.86E-2	5.15E-3	$2.76 \mathrm{E}-2$	2.14E-2	-1.11E-2	8.16E-2
RWD	kg	$1.38 \mathrm{E}-5$	8.09E-7	$3.44 \mathrm{E}-7$	1.49E-5	5.65E-7	$2.20 \mathrm{E}-6$	3.18E-8	-6.01E-6	1.17E-5
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31203035777

