Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	$3067769-$ SiTech+ Branch Reduced STEA 67,5 $5^{\circ} 110 \times 50$
Unit:	1 piece
Manufacturer:	Wavin - IT - SM Maddalena

LCA standard:

Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:
Martijn van Hövell - SGS Search

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin - IT - SM Maddalena (2020). ($\mathbf{V}=\mathrm{module} \mathrm{declared} ,\mathrm{MND} \mathrm{=} \mathrm{module} \mathrm{not} \mathrm{declared)}$

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential
Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin - IT - SM Maddalena. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin - IT - SM Maddalena.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$8.75 \mathrm{E}-1$	$1.77 \mathrm{E}-2$	$6.24 \mathrm{E}-2$	$9.55 \mathrm{E}-1$	$1.13 \mathrm{E}-2$	$5.21 \mathrm{E}-1$	$5.47 \mathrm{E}-3$	-5.27E-1	$9.66 \mathrm{E}-1$
GWP-f		kg CO2 eq	$9.74 \mathrm{E}-1$	$1.77 \mathrm{E}-2$	5.34E-2	1.05E+0	$1.13 \mathrm{E}-2$	$3.94 \mathrm{E}-1$	5.47E-3	-5.81E-1	$8.75 \mathrm{E}-1$
GWP-b		kg CO2 eq	-9.97E-2	$1.07 \mathrm{E}-5$	$4.51 \mathrm{E}-3$	-9.51E-2	$6.88 \mathrm{E}-6$	1.27E-1	$4.81 \mathrm{E}-6$	$5.46 \mathrm{E}-2$	$8.68 \mathrm{E}-2$
GWP-Iuluc		kg CO 2 eq	$6.35 \mathrm{E}-4$	6.25E-6	$4.51 \mathrm{E}-3$	5.15E-3	4.01E-6	6.39E-5	$9.25 \mathrm{E}-8$	-5.42E-4	$4.68 \mathrm{E}-3$
ODP		kg CFC11 eq	$3.96 \mathrm{E}-8$	$4.07 \mathrm{E}-9$	5.36E-9	$4.91 \mathrm{E}-8$	$2.61 \mathrm{E}-9$	$9.08 \mathrm{E}-9$	$1.38 \mathrm{E}-10$	-2.79E-8	$3.30 \mathrm{E}-8$
AP		mol $\mathrm{H}+\mathrm{eq}$	3.72E-3	1.01E-4	$2.15 \mathrm{E}-4$	4.04E-3	$6.45 \mathrm{E}-5$	3.79E-4	3.29E-6	-1.82E-3	$2.67 \mathrm{E}-3$
EP-fw		kg Peq	1.86E-5	$1.45 \mathrm{E}-7$	8.30E-7	$1.96 \mathrm{E}-5$	9.32E-8	$1.87 \mathrm{E}-6$	$4.26 \mathrm{E}-9$	-1.12E-5	$1.03 \mathrm{E}-5$
EP-m		kg Neq	$6.75 \mathrm{E}-4$	3.60E-5	3.64E-5	7.47E-4	2.31E-5	$1.14 \mathrm{E}-4$	$2.40 \mathrm{E}-6$	-3.46E-4	5.40E-4
EP-T		$\mathrm{mol} \mathrm{Neq}^{\text {d }}$	7.45E-3	3.97E-4	4.09E-4	$8.25 \mathrm{E}-3$	$2.54 \mathrm{E}-4$	$1.25 \mathrm{E}-3$	$1.34 \mathrm{E}-5$	-3.88E-3	5.89E-3
POCP		kg NMVOC eq	3.22E-3	$1.13 \mathrm{E}-4$	$1.27 \mathrm{E}-4$	$3.46 \mathrm{E}-3$	7.27E-5	3.91E-4	5.00E-6	-1.60E-3	$2.32 \mathrm{E}-3$
ADP-mm		kg Sb eq	3.96E-5	$4.57 \mathrm{E}-7$	1.30E-6	4.13E-5	$2.93 \mathrm{E}-7$	$1.48 \mathrm{E}-6$	3.30E-9	-4.90E-6	3.82E-5
ADP-f		MJ	3.31E+1	$2.71 \mathrm{E}-1$	7.03E-1	$3.41 \mathrm{E}+1$	$1.74 \mathrm{E}-1$	$1.14 \mathrm{E}+0$	$1.01 \mathrm{E}-2$	-1.73E+1	$1.81 \mathrm{E}+1$
WDP		m3 depriv.	6.55E-1	8.32E-4	$2.49 \mathrm{E}-1$	$9.04 \mathrm{E}-1$	5.34E-4	$2.23 \mathrm{E}-2$	4.61E-5	-3.65E-1	$5.62 \mathrm{E}-1$
PM		disease inc.	3.71E-8	$1.59 \mathrm{E}-9$	$2.16 \mathrm{E}-9$	$4.08 \mathrm{E}-8$	$1.02 \mathrm{E}-9$	$6.08 \mathrm{E}-9$	6.91E-11	-1.93E-8	$2.87 \mathrm{E}-8$
IR		kBq U-235 eq	$2.45 \mathrm{E}-2$	1.19E-3	6.56E-4	$2.63 \mathrm{E}-2$	7.60E-4	3.52E-3	4.68E-5	-1.19E-2	$1.87 \mathrm{E}-2$
ETP-fw		CTUe	$1.31 \mathrm{E}+1$	2.20E-1	1.11E+0	$1.44 \mathrm{E}+1$	1.41E-1	$1.43 \mathrm{E}+0$	$9.18 \mathrm{E}-3$	-6.72E+0	$9.27 \mathrm{E}+0$
HTP-c		CTUn	2.96E-10	7.84E-12	5.91E-11	3.63E-10	5.02E-12	1.54E-10	$2.44 \mathrm{E}-13$	-1.57E-10	3.64E-10
HTP-nc		CTUn	7.22E-9	2.63E-10	1.23E-9	8.71E-9	1.68E-10	1.94E-9	5.59E-12	-3.88E-9	$6.95 \mathrm{E}-9$
SQP		Pt	1.23E+1	$2.32 \mathrm{E}-1$	$1.28 \mathrm{E}-1$	1.27E+1	$1.49 \mathrm{E}-1$	$8.97 \mathrm{E}-1$	$2.58 \mathrm{E}-2$	-1.78E+1	$-4.05 \mathrm{E}+0$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	2.22E+0	3.89E-3	$2.43 \mathrm{E}+0$	4.65E+0	$2.49 \mathrm{E}-3$	5.52E-2	3.97E-4	$-3.12 \mathrm{E}+0$	$1.59 \mathrm{E}+0$
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	2.22E+0	3.89E-3	$2.43 \mathrm{E}+0$	4.65E+0	$2.49 \mathrm{E}-3$	$5.52 \mathrm{E}-2$	3.97E-4	$-3.12 \mathrm{E}+0$	$1.59 \mathrm{E}+0$
PENRE		MJ	$3.55 \mathrm{E}+1$	$2.88 \mathrm{E}-1$	7.67E-1	$3.66 \mathrm{E}+1$	$1.85 \mathrm{E}-1$	$1.22 \mathrm{E}+0$	$1.07 \mathrm{E}-2$	-1.87E+1	$1.93 \mathrm{E}+1$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$3.55 \mathrm{E}+1$	$2.88 \mathrm{E}-1$	7.67E-1	$3.66 \mathrm{E}+1$	1.85E-1	$1.22 \mathrm{E}+0$	$1.07 \mathrm{E}-2$	-1.87E+1	$1.93 \mathrm{E}+1$
PET		MJ	3.77E+1	$2.92 \mathrm{E}-1$	$3.20 \mathrm{E}+0$	4.12E+1	1.87E-1	$1.27 \mathrm{E}+0$	1.11E-2	-2.18E+1	2.09E+1
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	1.07E-2	3.07E-5	$5.91 \mathrm{E}-3$	1.66E-2	1.97E-5	7.33E-4	$1.24 \mathrm{E}-5$	-6.45E-3	1.10E-2

Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD	kg	6.35E-6	6.94E-7	6.83E-7	7.73E-6	4.45E-7	1.96E-6	1.21E-8	-5.54E-6	4.61E-6
NHWD	kg	$5.26 \mathrm{E}-2$	$1.68 \mathrm{E}-2$	6.66E-3	7.61E-2	$1.08 \mathrm{E}-2$	5.69E-2	$4.43 \mathrm{E}-2$	-2.11E-2	1.67E-1
RWD	kg	$2.48 \mathrm{E}-5$	$1.84 \mathrm{E}-6$	7.29E-7	$2.74 \mathrm{E}-5$	$1.18 \mathrm{E}-6$	4.51E-6	6.58E-8	-1.13E-5	$2.19 \mathrm{E}-5$
CRU	kg	0	0	0	0	0	0	0	0	0
MFR	kg	0	0	0	0	0	0	0	0	0
MER	kg	0	0	0	0	0	0	0	0	0
EE	MJ	0	0	0	0	0	0	0	0	0
EET	MJ	0	0	0	0	0	0	0	0	0
EEE	MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31203035777

