

INSTITUTO DE CIENCIAS DE LA CONSTRUCCIÓN EDUARDO TORROJA

C/ Serrano Galvache n. 4 28033 Madrid (Spain) Tel.: (34) 91 302 04 40 Fax: (34) 91 302 07 00 direccion.ietcc@csic.es

www.ietcc.csic.es

European Technical Assessment

ETA 22/0099 of 03/02/2022

English translation prepared by IETcc. Original version in Spanish language

General Part

Technical Assessment Body issuing the ETA designated according to Art. 29 of Regulation (EU) 305/2011:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plants

This European Technical **Assessment contains**

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)

Novipro drop-in anchor SA-X

Deformation controlled anchor made of galvanized steel of sizes M6, M8, M10, M12 and M16 for use in non-cracked concrete

Dahl Sverige AB

Bryggerivägen 9 168 67 Bromma. Sweden. website: www.dahl.se

Dahl Sverige AB plant 1

10 pages including 3 annexes which form an integral part of this assessment.

European Technical Assessment EAD 330232-00-0601 "Mechanical Fasteners for use in concrete", ed. October 2016

Page 2 of European Technical Assessment ETA 22/0099 of 3rd February 2022

English translation prepared by IETcc

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to article 25 (3) of Regulation (EU) No 305/2011.

SPECIFIC PART

1. Technical description of the product

The Novipro drop-in anchor SA-X in the range of M6 to M16 is an anchor made of galvanised steel, which is placed into a drilled hole and anchored by deformation-controlled expansion. The anchorage is characterised by friction between the sleeve and concrete.

Product and product description is given in annex A.

2. Specification of the intended use in accordance with the applicable European Assessment Document.

The performances given in section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a mean to choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static or quasi static	See annexes C1 to C3
loading	
Displacements under tension and shear loads	See annexes C2 and C3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance	
Reaction to fire	Anchorages satisfy requirements for class A1	

4. Assessment and Verification of Constancy of Performances (hereinafter AVCP) system applied, with reference to its legal base

The applicable European legal act for the system of Assessment and Verification of Constancy of Performances (see annex V to Regulation (EU) No 305/2011) is 96/582/EC.

The system to be applied is 1.

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document.

The technical details necessary for the implementation of the AVCP system are laid down in the quality plan deposited at Instituto de Ciencias de la Construcción Eduardo Torroja.

Instituto de ciencias de la construcción Eduardo Torroja CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

C/ Serrano Galvache n.º 4. 28033 Madrid. Tel: (+34) 91 302 04 40 Fax. (+34) 91 302 07 00 www.ietcc.csic.es

On behalf of the Instituto de Ciencias de la Construcción Eduardo Torroja Madrid, 3rd of February 2022

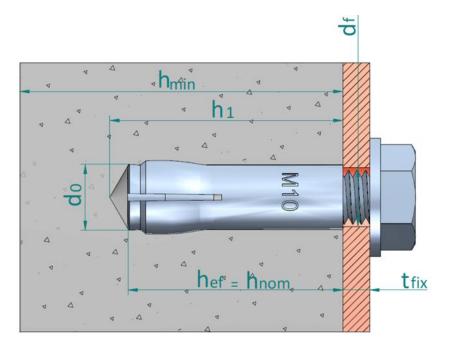
Product

SA-X anchor

Identification on sleeve: Novipro logo + "SA_X" + Metric; e.g: SA-X M6

Anchor dimensions		М6	M8	M10	M12	M16
ØD: External diameter	[mm]	8	10	12	15	20
Ød: internal diameter	[mm]	M6	M8	M10	M12	M16
L: total length	[mm]	25	30	40	50	65

Setting tool



Setting tool dime	ensions	M6	M8	M10	M12	M16
Ø D ₁	[mm]	8.0	10.0	12.0	15.0	20.0
Ø D ₂	[mm]	4.9	6.4	8.2	10.0	13.5
Ls	[mm]	15.0	18.0	21.0	30.0	36.0

Setting tool can be assembled with a plastic handle for hand protection purposes

SA-X anchor	
Product description	Annex A1
Product	

Installed condition

hef: Effective anchorage depth

h₁: Depth of drilled hole

h_{nom}: Overall anchor embedment depth in the concrete

h_{min}: Minimum thickness of concrete member

t_{fix}: Thickness of fixture

d₀: Nominal diameter of drill bitd_f: Fixture clearance hole diameter

Table A1: materials

Item	Designation	Material for SA-X
1	Sleeve	Carbon steel wire rod, zinc plated ≥ 5 µm ISO 4042 A2
2	Cone	Carbon steel wire rod, zinc plated ≥ 5 µm ISO 4042 A2
3	Plastic retainer	PVC

SA-X anchor	
Product description	Annex A2
Installed condition and Materials	

Specifications of intended use

Anchorages subjected to:

• Static or quasi static loads

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013+A1:2016
- Strength classes C20/25 to C50/60 according to EN 206:2013+A1:2016
- Uncracked concrete

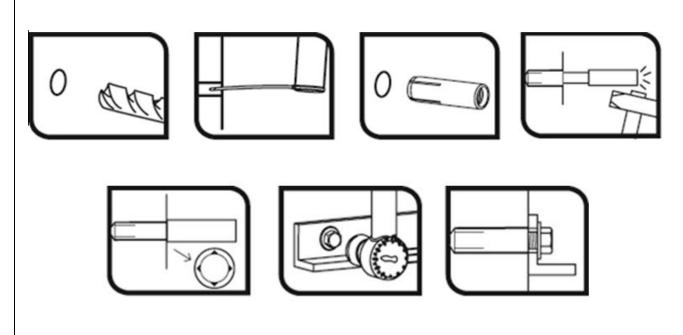
Use conditions (environmental conditions):

Anchorages subjected to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete.
- Verifiable calculation rules and drawings are prepared taking into account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed for design method A in accordance with EN 1992-4:2018

Installation:


- Hole drilling by rotary plus hammer mode.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- The bolt or threaded rod to be used shall be property class 4.6 / 5.6 / 5.8 / 6.8 or 8.8 according to ISO 898-1.
- The length of the bolt shall be determined as:
 - $\quad \text{o} \quad \text{Minimum bolt length} = t_{\text{fix}} + \ell_{\text{s,min}}$
 - o Maximum bolt length = $t_{fix} + \ell_{s,max}$

SA-X anchor	
Intended use	Annex B1
Specifications	

Table C1: Installation parameters for SA-X anchor

Installation parameters		Performances					
		М6	M8	M10	M12	M16	
do	Nominal diameter of drill bit:	[mm]	8	10	12	15	20
D	Thread diameter:	[mm]	M6	M8	M10	M12	M16
df	Fixture clearance hole diameter ≤	[mm]	7	9	12	14	18
Tinst	Maximum installation torque:	[Nm]	4	11	17	38	60
$\ell_{s,min}$	Minimum screwing depth:	[mm]	6	8	10	12	16
ℓs,max	Maximum screwing depth:	[mm]	10	13	17	21	27
h _{min}	Minimum thickness of concrete member:	[mm]	100	100	100	100	130
h ₁	Depth of drilled hole:	[mm]	27	33	43	54	70
h _{nom}	Overall anchor embedm. depth in the concrete:	[mm]	25	30	40	50	65
h _{ef}	Effective anchorage depth:	[mm]	25	30	40	50	65
Smin	Minimum allowable spacing:	[mm]	60	60	80	100	130
Cmin	Minimum allowable distance:	[mm]	105	105	140	175	230

Installation process

SA-X anchor	
Performances	Annex C1
Installation parameters and installation procedure	

Table C2: Characteristic values to tension loads of design method A according to EN 1992-4 for SA-X anchor

Charac	Characteristic values of resistance to tension loads		Performances				
of des	design according to design method A			M8	M10	M12	M16
Tensic	on loads: steel failure						
$N_{\text{Rk,s}}$	Tension steel char. resistance, steel class 4.6:	[kN]	8,0	14,6	23,2	33,7	62,8
γ _{Ms} 1)	Partial safety factor:	[-]	2,0	2,0	2,0	2,0	2,0
$N_{Rk,s}$	Tension steel char. resistance, steel class 4.8:	[kN]	8,0	14,6	18,2	33,7	62,8
γ _{Ms} 1)	Partial safety factor:	[-]	1,5	1,5	1,5	1,5	1,5
$N_{\text{Rk,s}}$	Tension steel char. resistance, steel class 5.6:	[kN]	10,1	18,3	18,2	42,2	78,5
γ _{Ms} 1)	Partial safety factor:	[-]	2,0	2,0	1,5	2,0	2,0
$N_{\text{Rk},\text{s}}$	Tension steel char. resistance, steel class 5.8:	[kN]	10,1	17,6	18,2	35,1	65,0
γ _{Ms} 1)	Partial safety factor:	[-]	1,5	1,5	1,5	1,5	1,5
$N_{Rk,s}$	Tension steel char. resistance, steel class 6.8	[kN]	12,1	17,6	18,2	35,1	65,0
γ _{Ms} 1)	Partial safety factor:	[-]	1,5	1,5	1,5	1,5	1,5
$N_{Rk,s}$	Tension steel char. resistance, steel class 8.8	[kN]	13,1	17,6	18,2	35,1	65,0
γ _{Ms} 1)	Partial safety factor:		1,5	1,5	1,5	1,5	1,5
Tensic	on loads: pull-out failure in concrete						
N _{Rk,p, uc}	Tension characteristic resistance in C20/25 uncracked concrete	[kN]	2)	2)	2)	2)	2)
	C30/37	[-]	1,02	1,22	1,15	1,15	1,22
ψ_{c}	Increasing factor for N ⁰ _{Rk,p} : C40/50	[-]	1,04	1,41	1,29	1,28	1,41
	C50/60	[- <u>]</u>	1,05	1,55	1,37	1,37	1,55
γins	Installation safety factor:	[-]	1,2	1,2	1,4	1,4	1,4
Tensic	on loads: concrete cone and splitting fail	ure					
h _{ef}	Effective embedment depth:	[mm]	25	30	40	50	65
k _{ucr,N}	Factor for uncracked concrete:	[-]			11.0		
γins	Installation safety factor:	[-]	1,2	1,2	1,4	1,4	1,4
Scr,N	Concrete cone failure:	[mm]			3 x h _{ef}		
Ccr,N	Concrete cone failure.	[mm]			1.5 x h _{ef}		
Scr,sp	Splitting failure:	[mm]	150	180	240	300	390
Ccr,sp	<u> </u>		75	90	120	150	195
Displa	cements under tension loads						
N	Service tension load in uncracked concrete C20/25 to C50/60:	[kN]	2,4	3,4	6,0	7,4	17,8
δ_{N0}	Short term displacement under tension loads:	[mm]	0,1	0,1	0,1	0,1	0,1
δ_{N^∞}	Long term displacement under tension loads:	[mm]	0,3	0,3	0,3	0,3	0,3

¹⁾ In absence of other national regulations 2) Pull out failure does not govern

SA-X anchor	
Performances	Annex C2
Characteristic values for tension loads	

Table C3: Characteristic values to shear loads of design method A according to EN1992-4 for SA-X anchor

Chara	cteristic values of resistance to shear loa	Performances							
	n according to design method A	М6	M8	M10	M12	M16			
Shear loads: steel failure without lever arm									
$V_{Rk,s}$	Shear steel char. resistance, steel class 4.6:	[kN]	4,0	7,3	11,6	16,8	31,4		
γ _{Ms} ¹⁾	Partial safety factor:	[-]	1,67	1,67	1,67	1,67	1,67		
$V_{Rk,s}$	Shear steel char. resistance, steel class 4.8:	[kN]	4,0	7,3	9,1	16,8	31,4		
γ _{Ms} 1)	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25		
$V_{Rk,s}$	Shear steel char. resistance, steel class 5.6	[kN]	5,0	9,1	9,1	21,1	39,2		
γ _{Ms} ¹⁾	Partial safety factor:	[-]	1,67	1,67	1,25	1,67	1,67		
V _{Rk,s}	Shear steel char. resistance, steel class 5.8	[kN]	5.0	8,8	9,1	17,5	32,5		
γ _{Ms} ¹⁾	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25		
$V_{Rk,s}$	Shear steel char. resistance, steel class 6.8	[kN]	6,0	8,8	9,1	17,5	32,5		
γ _{Ms} ¹⁾	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25		
$V_{Rk,s}$	Shear steel char. resistance, steel class 8.8:	[kN]	6,5	8,8	9,1	17,5	32,5		
γ _{Ms} ¹⁾	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25		
Shear	loads: steel failure with lever arm								
$M^0_{Rk,s}$	Characteristic bending moment, steel class 4.6	[Nm]	6,1	15.0	29,9	52,4	133,3		
γ _{Ms} 1)	Partial safety factor:	[-]	1,67	1,67	1,67	1,67	1,67		
$M^0_{Rk,s}$	Characteristic bending moment, steel class 4.8	[Nm]	6,1	15.0	29,9	52,4	133,3		
γ _{Ms} 1)	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25		
M^0 Rk,s	Characteristic bending moment, steel class 5.6	[Nm]	7,6	18,8	37,4	65,5	166,6		
γMs ¹⁾	Partial safety factor:	[-]	1,67	1,67	1,67	1,67	1,67		
M^0 Rk,s	Characteristic bending moment, steel class 5.8	[Nm]	7,6	18,8	37,4	65,5	166,6		
γ _{Ms} 1)	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25		
M^0 Rk,s	Characteristic bending moment, steel class 6.8	[Nm]	9,2	22,5	44,9	78,7	199,9		
γMs ¹⁾	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25		
$M^0_{Rk,s}$	Characteristic bending moment, steel class 8.8	[Nm]	12,2	30,0	59,9	104,9	266,6		
γMs ¹⁾	Partial safety factor:)	[-]	1,25	1,25	1,25	1,25	1,25		
Shear	loads: concrete pryout failure								
k ₈	Pryout factor:	[-]	1,0	1,0	1,0	1,0	2,0		
γins	Installation safety factor:	[-]			1.0				
Shear	loads: concrete edge failure								
ℓ_{f}	Effective anchorage depth under shear loads:	[mm]	25	30	40	50	65		
d _{nom}	Outside anchor diameter:	[mm]	8	10	12	15	20		
γins	Installation safety factor:			1,0					
Displa	cements under shear loads								
V	Service shear load in uncracked concrete C20/25 to C50/60:	[kN]	3,8	5,0	5,2	10,1	18,6		
δ_{V0}	Short term displacement under shear loads:	[mm]	2,4	2,4	2,4	1,3	1,0		
δν∞	Long term displacement under shear loads:	[mm]	3,5	3,5	3,5	2,0	1,5		

¹⁾ In absence of other national regulations

SA-X anchor	
Performances	Annex C3
Characteristic values for shear load.	

INSTITUTO DE CIENCIAS DE LA CONSTRUCCIÓN EDUARDO TORROJA

C/ Serrano Galvache n. 4
Tel.: (34) 91 302 04 40
direccion jetcc @csic.es

28033 Madrid (Spain) Fax: (34) 91 302 07 00 https://dit.ietcc.csic.es

Designated according to

European Technical Assessment

ETA 22/0098 of 03/02/2022

English translation prepared by IETcc. Original version in Spanish language

General Part

Technical Assessment Body issuing the ETA designated according to Art. 29 of Regulation (EU) 305/2011:

Trade name of the construction product:

Product family to which the construction product belongs:

Manufacturer:

Manufacturing plant:

This European Technical
Assessment contains:

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of: Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)

Novipro drop-in anchor SA-X

Deformation controlled anchor made of galvanized steel or stainless steel or stainless steel of sizes M6, M8, M10, M12 and M16 for use in concrete for redundant non-structural systems

Dahl Sverige AB

Bryggerivägen 9 168 67 Bromma. Sweden. website: <u>www.dahl.se</u>

Dahl Sverige AB plant 1

10 pages including 3 annexes which form an integral part of this assessment.

European Assessment Document EAD 330747-00-0601, "Fasteners for use in concrete for redundant non-structural systems", ed. May 2018.

Page 2 of European Technical Assessment ETA 22/0098 of 03/02/2022

English translation prepared by IETcc

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to article 25 (3) of Regulation (EU) No 305/2011.

SPECIFIC PART

1. Technical description of the product

The Novipro drop-in anchor SA-X, in the range of M6 to M16, is an anchor made of galvanised steel. It is placed into a drilled hole and anchored by deformation-controlled expansion. The anchorage is characterised by friction between the sleeve and concrete.

Product and installation descriptions are given in annexes A1 and A2.

2. Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a mean to choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Safety in case of fire (BWR 2)

Essential characteristic	Performance			
	Anchorages satisfy requirements for class A1 according to EN 13501-1			
Resistance to fire	See annex C3			

3.2 Safety in use (BWR 4)

Essential	characteristic						Performance
Essential	characteristics	under	static	or	quasi	static	See annex C3
loading							

4. Assessment and Verification of Constancy of Performances (hereinafter AVCP) system applied, with reference to its legal base

The applicable European legal act for the system of Assessment and Verification of Constancy of Performances (see annex V to Regulation (EU) No 305/2011) is 97/161/EC.

The system to be applied is 2+.

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

The technical details necessary for the implementation of the AVCP system are laid down in the quality plan deposited at Instituto de Ciencias de la Construcción Eduardo Torroja.

Instituto de Ciencias de la Construcción Eduardo Torroja CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

C/ Serrano Galvache n.º 4. 28033 Madrid. Tel: (+34) 91 302 04 40 Fax. (+34) 91 302 07 00 https://dit.ietcc.csic.es

On behalf of the Instituto de Ciencias de la Construcción Eduardo Torroja Madrid, 3rd of February 2022

Director IETcc - CSIC

Product

SA-X anchor

Identification on sleeve: Novipro logo + "SA-X" + Metric; e.g: SA-X M6

Table A1: Dimensions

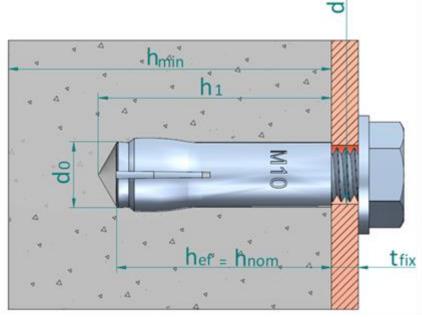

Anchor dimensions		M6	M8	M10	M12	M16
ØD: External diameter	[mm]	8	10	12	15	20
Ød: internal diameter	[mm]	M6	M8	M10	M12	M16
L: total length	[mm]	25	30	40	50	65

Table A2: Materials

Item	Designation	Material for SA-X
1	Sleeve	Carbon steel, zinc plated ≥ 5 μm ISO 4042 Zn5/An/T0
2	Cone	Carbon steel, zinc plated ≥ 5 μm ISO 4042 Zn5/An/T0
3	Retention disc	Plastic

SA-X anchor	
Product description	Annex A1
Product and materials	

Installed condition in concrete

hef: Effective anchorage depth

h₁: Depth of drilled hole

h_{nom}: Overall anchor embedment depth in the concrete

h_{min}: Minimum thickness of concrete member

t_{fix}: Thickness of fixture

d₀: Nominal diameter of drill bitd_f: Fixture clearance hole diameter

Setting tool

Setting tool can be assembled with a plastic handle for hand protection purposes

Table A3: Setting tool dimensions

Setting tool dimensions		М6	M8	M10	M12	M16
Ø D ₁	[mm]	8.0	10.0	12.0	15.0	20.0
Ø D ₂	[mm]	4.9	6.4	8.2	10.0	13.5
Ls	[mm]	15.0	18.0	21.0	30.0	36.0

SA-X anchor	
Product description	Annex A2
Installed condition in concrete and setting tool	

Specifications of intended use

Anchorages subjected to:

- Static or quasi static loads for redundant non-structural systems.
- Use for anchorages with requirements related to resistance of fire (not for using in prestressed hollow core slabs).
- The anchor may only be used if in the design and installation specifications for the fixture the excessive slip or failure of one anchor will not result in a significant violation of the requirements on the fixture in the serviceability and ultimate state.

Base materials:

- Reinforced or unreinforced normal weight concrete without fibres according to EN 206-1:2013+A1:2016.
- Strength classes C12/15 to C50/60 according to EN 206-1:2013+A1:2016.
- Cracked or uncracked concrete.

Use conditions (environmental conditions):

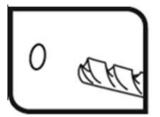
Anchorages subjected to dry internal conditions.

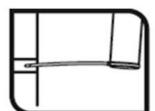
Design:

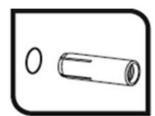
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete.
- Verifiable calculation rules and drawings are prepared taking into account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed for design method B in accordance with EN 1992-4:2018
- Anchorages under fire exposure are designed in accordance to EN 1992-4:2018. It must be ensured that local spalling of the concrete cover does not occur.

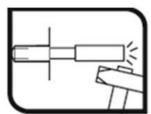
Installation:

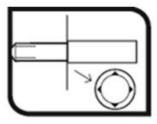
- Hole drilling by rotary plus hammer mode.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- The bolt or threaded rod to be used shall be property class 4.6, 5.6, 5.8, 6.8 or 8.8 according to ISO 898-1
- The length of the bolt shall be determined as: -Minimum bolt length = t_{fix} + $\ell_{s,min}$ -Maximum bolt length = t_{fix} + $\ell_{s,max}$

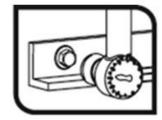

SA-X anchor	
Intended use	Annex B1
Specifications	

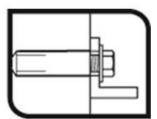

Table C1: Installation parameters in concrete for SA-X anchor


Installation parameters			Performances				
			M6	M8	M10	M12	M16
d ₀	Nominal diameter of drill bit:	[mm]	8	10	12	15	20
D	Thread diameter:	[mm]	M6	M8	M10	M12	M16
df	Fixture clearance hole diameter ≤	[mm]	7	9	12	14	18
Tinst	Maximum installation torque:	[Nm]	4	11	17	38	60
ls,min	Minimum screwing depth:	[mm]	6	8	10	12	16
ls,max	Maximum screwing depth:	[mm]	10	13	17	21	27
h₁	Depth of drilled hole:	[mm]	27	33	43	54	70
h _{nom}	Overall anchor embedment depth:	[mm]	25	30	40	50	65
h _{ef}	Effective anchorage depth:	[mm]	25	30	40	50	65
h _{min}	Minimum thickness of concrete member:	[mm]	100	100	100	100	130
Smin	Minimum allowable spacing:	[mm]	60	60	80	100	130
C _{min}	Minimum allowable distance:	[mm]	105	105	140	175	230


SA-X anchor	
Performances	Annex C1
Installation parameters in concrete	


Installation process





SA-X anchor

Performances

Installation procedure

Annex C2

<u>Table C2: Essential characteristics in concrete to loads of design method B according to EN 1992-4 for SA-X anchor</u>

Essential characteristics of resistance to loads of design method B			Performances					
			M6	M8	M10	M12	M16	
Any load direction								
F^0_Rk	Characteristic resistance in C12/15 concrete:	[kN]	1.5	3.0	4.0	6.0	9.0	
F ⁰ Rk	Characteristic resistance in C20/25 to C50/60 concrete:	[kN]	2.0	3.0	5.0	7.5	12.0	
γins	Installation safety factor:	[-]	1.2	1.2	1.4	1.4	1.4	
Scr	Critical spacing:	[mm]	75	90	120	150	195	
Ccr	Critical edge distance:	[mm]	40	45	60	75	100	
Shear loads: steel failure with lever arm								
M ⁰ Rk,s	Characteristic bending moment, steel class 4.6	[Nm]	6.1	15.0	29.9	52.4	133.3	
γMs ¹⁾	Partial safety factor:	[-]	1.67					
$M^0_{\text{Rk,s}}$	Characteristic bending moment, steel class 4.8	[Nm]	6.1	15.0	29.9	52.4	133.3	
γ _{Ms} 1)	Partial safety factor:	[-]	1.25					
$M^0_{\text{Rk},s}$	Characteristic bending moment, steel class 5.6	[Nm]	7.6	18.8	37.4	65.5	166.6	
γMs ¹⁾	Partial safety factor:	[-]	1.67					
$M^0_{\text{Rk},s}$	Characteristic bending moment, steel class 5.8	[Nm]	7.6	18.8	37.4	65.5	166.6	
γMs ¹⁾	Partial safety factor:	[-]	1.25					
$M^0_{\text{Rk,s}}$	Characteristic bending moment, steel class 6.8	[Nm]	9.2	22.5	44.9	78.7	199.9	
γ _{Ms} 1)	Partial safety factor:	[-]	1.25					
$M^0_{Rk,s}$	Characteristic bending moment, steel class 8.8	[Nm]	12.2	30.0	59.9	104.9	266.6	
γMs ¹⁾	Partial safety factor:	[-]			1.25			

¹⁾ In absence of other national regulations

Table C3: Essential characteristics under fire exposure in concrete C20/25 to C50/50 in any load direction according to EN 1992-4 for SA-X anchor

Essential characteristics under fire exposure in concrete C20/25 to C50/60 in any load direction			Performaces					
			M6	M8	M10	M12	M16	
R30	Characteristic resistance	: F ⁰ Rk,fi30 ¹⁾	[kN]	0.2	0.4	0.9	1.7	3.1
R60	Characteristic resistance	: F ⁰ Rk,fi60 ¹⁾	[kN]	0.2	0.3	0.8	1.3	2.4
R90	Characteristic resistance	: F ⁰ _{Rk,fi90} ¹⁾	[kN]	0.1	0.3	0.6	1.1	2.0
R120	Characteristic resistance	: F ⁰ Rk,fi120 ¹⁾	[kN]	0.1	0.2	0.5	8.0	1.6
R30 to R120	Spacing	Scr,fi	[mm]	4 x h _{ef}				
	Edge distance	Ccr,fi	[mm]	2 x hef				

 $^{^{1)}}$ in absence of other national regulations the partial safety factor for resistance under fire exposure $γ_{M,fi}$ =1.0 is is recommended If fire attack is from more than one side, the design method may be taken if edge distance of the anchor is c ≥ 300 mm

SA-X anchor	
Performances	Annex C3
Essential characteristics in concrete and under fire exposure	